
QCicada QRNG
User Guide

Version 1.3

Copyright 2024 Crypta Labs Limited
51 St John's Sq
London
EC1V 4JL

Contact details:
Email: support@cryptalabs.com
Internet: https://www.cryptalabs.com/

All Rights reserved. No part of this documentation may be reproduced in any form (printing,
photocopy or according to any other process) without the written approval of Crypta Labs
Limited or be processed, reproduced or distributed using electronic systems.

Crypta Labs Limited reserves the right to modify or amend the current document at any time
without prior notice.

All trademarks and registered trademarks are the property of their respective owners.

Crypta Labs Limited assumes no liability for typographical errors and damages incurred due to
them.

Page 2

Contents

Contents 3
Introduction 5
System Requirements 5
Device Specification 6
Installation Guide 7

Linux 7
Preparation for Installation 7

Setup local directories 7
Validating the install 8

Windows 10
Preparation for Installation 10

Setup local directories 10
Validating the install 10

Product Usage 13
Generate a Random Number 13

One Shot mode 13
Continuous mode (Streaming) 14
Appending captured data to a file 15

Disable/Enable Post Processing 15
Display QRNG Status 16
Display Device Information 17
Using Multiple QCicada Devices 17
Firmware Update 18

Product Usage - Signed Read mode 18
Getting Started - Certificate Provisioning 19

How to perform Certificate Provisioning 19
Generating and Reading Signed Data 19

Product Features 20
Secure Boot 20
Real time Health Tests 21

Developing with QCicada 21
Examples 21

Python 21
Installation 21
Reading Quantum Random Numbers from a command line 22
Importing pyqcc as a module 22
Reading signed data 23

API Reference - Python 24

Page 3

C 25
Structure packing 25
Building 25

Requirements Linux 25
Requirements Windows 25

Example 26
Read data from the QRNG 26

API Reference - C 27
Return codes 27
QCC types 27
Cmd&Ctrl types 27
Functions 27

int qcc_version() 27
int qcc_init() 28
int qcc_cmd_get_status() 28
int qcc_cmd_start() 29
int qcc_read_continuous() 29
int qcc_cmd_stop() 30
int qcc_cmd_reset() 30
int qcc_cmd_set_config() 30
int qcc_cmd_get_config() 31
int qcc_cmd_get_statistics() 31
int qcc_cmd_get_info() 31
int qcc_close() 32

Page 4

Introduction
This document contains the user’s guide for the Crypta Labs USB Quantum Random Number
Generator (QRNG) – also known as QCicada QRNG.

System Requirements

Operating System Linux, Windows
Tested on Ubuntu 18.x/20.x/22.x/24.x, Centos 7, Windows 10/11

Interface USB 2.0

Crypta Labs supply the following executables/scripts to support the QCicada QRNG:

libqcc.so QCC Library for Linux, used to access the device

qcc.dll QCC Windows driver, used to access the device

qcc-cli QCC Interface tool for RNG generation/status
query/firmware update.

pyqcc-x.y.z-py3-none-any.whl Python implementation of QCC Library and interface
tool.

pyqcicada-x.y.z-py3-none-any.whl Python extension library supporting Secure
Communications mode.

Crypta Labs supply the following source code to support development with the QCicada QRNG:

qcc-source Source code for the above Linux/Windows
executables

All of the above files are available via https://cryptalabs.com/support/releases

Page 5

https://cryptalabs.com/support/releases

Device Specification
Performance 0.5Mbps

(~1,950 Random Numbers per second*)

NIST Compliant output Yes

Quality Independently
verified

Yes

Entropy Source 1 x Quantum Optics Module

Size 2cm x 7cm

Power

Single Input Voltage 5V

Normal operation 48mW

Idle Mode 12mW

Startup from Idle <1ms

Recommended operating
Temperature

-30°C ~ +85°C

Max operating
Temperature

-40°C ~ +125°C

Interface USB - 1Mbps

*Assumes random number of 256bits

Page 6

Installation Guide
For details on how to install the Python version of the QCC Control Library, please see the later
section: Developing with QCicada \ Python.

Linux

Preparation for Installation

In order to test QCicada operation, we will use the QCC Control Library and qcc-cli
executable. All examples shown are tested on Ubuntu 18.x and above.

Setup local directories

1. Download the Crypta Labs assets from the links within the System Requirements section
above.

You need to create a suitable directory in which to place the qcc-cli and libqcc.so. In this
example, and used elsewhere in this guide, we are creating a directory called /opt/QCicada

2. Enter the following commands to create this new directory. In the chown command,
specify the user and the owning group as regards the directory ownership and
permissions. Execute these commands with sudo permissions if appropriate:

cd /opt
mkdir QCicada
chown {user}:{owning_group} QCicada

3. Now extract and copy the contents relevant to your OS to the /opt/QCicada directory.
(E.g. If you use Ubuntu, move files from the Ubuntu folder within the archive).
Next set the permissions for files to be executable:

chmod 744 ./qcc-cli libqcc.so

4. Move libqcc.so to the /usr/lib folder:

sudo mv libqcc.so /usr/lib

You are now ready to validate that the QRNG is working correctly.

Page 7

Validating the install

5. Plug the Qcicada device into a spare USB port on your computer.

6. The device ID is required on the command line to identify which QCicada is being
addressed. To find this, Enter the command:

dmesg

This will produce output on the console like the below. QCicada will be detected as FTDI
USB Serial Device converter.

In the case of this example, the ID of QCicada is ttyUSB0: and this ID will be used
across all examples in this document. Ensure you use the ID relevant to your system.

[52.856736] usb 2-1: Detected FT-X
[52.868211] usb 2-1: FTDI USB Serial Device converter now
attached to ttyUSB0

7. Enter the command:

./qcc-cli -d /dev/ttyUSB0 -f -v

You should see results similar to the following:

QCC command-line tool
Copyright (C) Crypta Labs 2023

Initialize QCC

QRNG INFO:
core version: 0x1000A
FW version: 0x5000A
Serial: QC0000000101
HW info: CICADA-QRNG

If you see output like the above, the QCicada is functioning correctly.

Page 8

NOTE:

To run the code without root privileges, usually the QCicada Serial device is presented on
Linux as /dev/ttyUSB0 (if one device is present) and usually that device is assigned to the
"dialout" group.

The user accessing the QCicada device must be added to the group "dialout", in this way the
process will be able to use the device without needing to be a super user.

For example, the file permissions for the /dev/ttyUSB0 device are as follows:

crw-rw---- 1 root dialout 188, 0 Jul 11 11:49 ttyUSB0

To be able to use the device without root privileges, add the non-root user to the dialout group
with the following command::

sudo usermod -a -G dialout <non-root-username>

Update the users groups by restarting the ssh session, or rebooting the system, after that you
should be able to use the binary as a non-root user.

Page 9

Windows

Preparation for Installation

In order to test QCicada operation, we will use the supplied qcc-cli executable. All examples
shown are tested on Windows 10.

Setup local directories

1. Download the Crypta Labs assets from the links within the System Requirements section
above.

You need to create a suitable directory in which to place the qcc-cli.exe and libqcc.dll.
In this example, and used elsewhere in this guide, we are creating a directory called
C:\QCicada

2. Either use Windows Explorer to create a directory named QCicada in the root of C:\ or
enter the following commands in Command Prompt:

cd\
md QCicada

3. Now extract and copy the contents from the \Windows.x64\ folder within the
downloaded archive to the newly created directory.

You are now ready to validate that the QRNG is working correctly.

Validating the install

4. Plug the Qcicada device into a spare USB port on your computer.

5. The COM port number is required on the command line to identify which QCicada is
being addressed. To find this, use Device Manager and navigate to ‘Ports (COM & LPT)’.
Expand the list to see connected devices as illustrated in the image on the next page.

Page 10

If you are unsure on which device is which, right click on a detected ‘USB Serial
Port (COMx)’ device and choose ‘Properties’. QCicada will display as ‘FTDI’ as the
Manufacturer.

Page 11

8. In this example we are using COM3 as the relevant port. Enter the command in
Command Prompt:

qcc-cli -d COM3 -f -v

You should see results similar to the following:

QCC command-line tool
Copyright (C) Crypta Labs 2023

Initialize QCC

QRNG INFO:
core version: 0x1000A
FW version: 0x5000A
Serial: QC0000000101
HW info: CICADA-QRNG

If you see output like the above, the QCicada is functioning correctly.

NOTE:
All of the Usage Examples in the following pages are demonstrated on a Linux System.

Windows users must substitute the serial port identifier as below:

Linux = /dev/ttyUSB0
Windows = COM3

Also, there is no need to precede calls to qcc-cli with ./

Example:

The following illustrates the difference in the syntax for the same command executed on
windows and Linux:

Linux Command:
./qcc-cli -d /dev/ttyUSB0 -f -v

Windows Command:
qcc-cli -d COM3 -f -v

NOTE:
If the detected COM port is above COM9 (COM10 upwards), the port number must be preceded
with \\.\

Example:
qcc-cli -d \\.\COM10 -f -v

Page 12

Product Usage
The supplied qcc-cli tool can be used to access many of QCicada’s features. In the below
use cases we will document commands used and the expected output.

All examples shown use Linux syntax. Windows users, please see the note verso.

Note: in all examples we will be using the -v switch to enable Verbose mode and enhance the
console output.

Some Crypta Labs QRNG devices support communication over UDP. QCicada only supports
Serial communication and this is selected by default in the examples.

All of the below commands are summarised and displayed to the console with the command:

./qcc-cli -d /dev/ttyUSB0 --help

Generate a Random Number

One Shot mode

One Shot mode will read a requested amount of random data up to 13,440 bytes in size.
To generate 1000 bytes of random data and save to a file named Randgen.bin, use the
command:

./qcc-cli -d /dev/ttyUSB0 -r 1000 -o Randgen.bin -v

The console output should look like the below. The last field named Data will display the first
and last bit from the generated random data:

QCC command-line tool
Copyright (C) Crypta Labs 2023

Initialize QCC
Read 1000 bytes
1000 bytes of data written to file Randgen.bin
Data= 3b ... 6a

Page 13

Continuous mode (Streaming)

Continuous mode is used to generate data continuously until a Stop command is issued. It is
used when data capture is required in greater amounts than 13,400 bytes. To generate 15,000
bytes of data and save to a file named Randgen.bin, use the following commands:

 ./qcc-cli -d /dev/ttyUSB0 --start -v

The above command begins a continuous stream of data being generated on QCicada and
passed to the host. You will see the output:

QCC command-line tool
Copyright (C) Crypta Labs 2023

Initialize QCC
Continuous mode started!

The next command will begin a capture of the data:

./qcc-cli -d /dev/ttyUSB0 -c -r 15000 -o Randgen.bin -v

Capture time is dependent on the speed of the device, which operates at ~0.5Mbps. A large
capture will result in longer wait times to complete. You will see this result on the console:

QCC command-line tool
Copyright (C) Crypta Labs 2023

Initialize QCC
Read 15000 bytes
15000 bytes of data written to file Randgen.bin
Data= 28 ... 1b

The device remains in continuous mode until it is stopped. To issue a Stop command, use the
following:

./qcc-cli -d /dev/ttyUSB0 --stop -v

Successful response will return the following to the console:

QCC command-line tool
Copyright (C) Crypta Labs 2023

Initialize QCC
Continuous mode STOP!

Page 14

Appending captured data to a file

In the previous examples, when a filename is specified to save the captured random data, that
file is created or overwritten if it already exists. In order to Append data to an existing file, use
the switch -a within the command. The following command shows One Shot mode appending
1000 bytes of data to a file named Randgen.bin:

./qcc-cli -d /dev/ttyUSB0 -r 1000 -o Randgen.bin -a -v

Successful console output looks like this:
QCC command-line tool
Copyright (C) Crypta Labs 2023

Initialize QCC
Read 1000 bytes
1000 bytes of data written to file Randgen.bin
Data= 11 ... e8

Disable/Enable Post Processing

Post Processing is a function performed on the RAW capture form the onboard Quantum Optics
Module (QOM) to ensure the output is compliant with NIST Standards.

By default post processing is enabled on QCicada upon startup.

It may be desirable to output data without Post Processing, this is known as Raw data. QCicada
supports 3 methods of output:

- (0) Post Processing enabled (NIST compliant output using SHA256)
- (1) Raw Noise (Data from the QOM with some conditioning in accordance with the

health tests)
- (2) Raw Samples (Data directly from the QOM with no conditioning)

To disable Post Processing and enable Raw Noise capture, use the following command:

./qcc-cli -d /dev/ttyUSB0 -P 1 -v

To disable Post Processing and enable Raw Samples capture, use the following command:

./qcc-cli -d /dev/ttyUSB0 -P 2 -v

To enable Post Processing, use the following command:

./qcc-cli -d /dev/ttyUSB0 -P 0 -v

Page 15

Display QRNG Status

Statistics are available from QCicada as to the status of the device, the readily available data in
the buffer and the results of the Active Health Tests which run during operation to ensure quality
is maintained.

To view the status, run the command:

./qcc-cli -d /dev/ttyUSB0 -s -v

You will see output similar to the following on the console:

QCC command-line tool
Copyright (C) Crypta Labs 2023

Initialize QCC

QRNG STATUS:
Initialized: 1
startup_test_in_progress: 0
voltage_low: 0
voltage_high: 0
voltage_undefined: 0
bitcount: 0
repetition_count: 0
adaptive_proportion: 0
ready_bytes: 13440

Note: It is normal to see some errors logged within these statistics. QCicada is constantly
monitoring itself and will adjust the QOMs operational parameters accordingly to maintain
quality output.

Page 16

Display Device Information

To display device specific information such as Serial number and firmware revision, enter the
command:

./qcc-cli -d /dev/ttyUSB0 -f -v

You should see results similar to the following:

QCC command-line tool
Copyright (C) Crypta Labs 2023

Initialize QCC

QRNG INFO:
core version: 0x1000A
FW version: 0x5000A
Serial: QC0000000101
HW info: CICADA-QRNG

Using Multiple QCicada Devices
It is possible to use multiple QCicada’s on the same host. We have seen in previous examples
the need to specify the device you are communicating with. This is achieved via the -d switch.
In order to send a command to a different QCicada, specify the full identifier of the device within
the command.

In this example, we will read 1000 bytes of data from a device with ID ttyUSB1 to a file named
Randgen.bin:

./qcc-cli -d /dev/ttyUSB1 -r 1000 -o Randgen.bin -v

Page 17

Firmware Update

QCicada supports the ability for a user to update firmware. Only official Firmware releases
from Crypta Labs can be used on QCicada.

In the following case we are updating a QCicada to version 5.10 of the firmware:

./qcc-cli -d /dev/ttyUSB0 -U qcicada-ota-5.10-bx.bin -v

If the firmware has been updated, output like the following will be displayed on the console:

QCC command-line tool
Copyright (C) Crypta Labs 2023

Initialize QCC
Initialize update, FW image size 66944 bytes
Chunk len 1024 written, Update status 1, remaining 65920
Chunk len 1024 written, Update status 1, remaining 64896
[..]
Chunk len 1024 written, Update status 1, remaining 384
Chunk len 384 written, Update status 2, remaining 0
FW UPDATED!

Product Usage - Signed Read mode
NOTE:
This feature is only available via the Python library pyqcicada. For details on how to install
the Python version of the QCC Control Library, please see the later section: Developing with
QCicada \ Python.

This function allows the user to verify that the random data is coming from a known and trusted
Crypta Labs device.

The data is ECDSA signed using a private key stored within the secure One Time
Programmable (OTP) area of the device (NIST P256 curve).

The device Private Key is generated internally in the device and saved during device Certificate
Provisioning.

Page 18

https://cryptalabs.fogbugz.com/f/cases/256

Getting Started - Certificate Provisioning

Before Signed Read mode can be used, the QRNG must be provisioned with a Certificate.
Certificate Provisioning is performed one time only per QCicada device.

Certificate Provisioning is the process of creating and signing a Certificate with a key pair
unique to the user/company using/distributing the QCicada device, and then writing it to the
device's secure OTP area. The Certificate is generated using the following device specific data:

● HW ID
● Device serial
● Device public key

The company key pair used to sign the certificate is also known as the ‘Certificate Authority key’.
Extreme care should be taken to store the Private part of the CA key.

How to perform Certificate Provisioning

1. Generate a CA key pair
2. Write it to the QCicada

Follow the instructions in the online reference guide:
https://cryptalabs.com/support/docs/pyqcicada/#certificate-authority

Generating and Reading Signed Data

A user can verify if the device is genuine by reading the device specific information to re-create
the full certificate and verify the signature.

When the user asks for Signed data (1 to 13400 bytes per read) the device will reply with the
data bytes and 64 bytes ECDSA signature. The user can then verify the signature of the
received data with the device public key (that can be read and verified before reading the data)
The signature verification allows the user to verify the authenticity and integrity of the random
data.

This process is illustrated as follows:

Page 19

https://cryptalabs.com/support/docs/pyqcicada/#certificate-authority

Step1: The device public key is extracted and device is verified:

Step 2: The data is verified upon receipt from the device:

See the below section ‘Developing with QCcicada’ for examples on how to read and verify data.

Product Features

Secure Boot

Firmware images are encrypted and digitally signed. When the firmware image is loaded into
QCicada it is decrypted and verified. The private key used to sign the image is retained and
kept secure by Crypta Labs. The encryption uses AES-256 in CBC mode.

Page 20

Real time Health Tests

Health tests run in conjunction with random number generation to ensure the data provided by
QCicada is of the highest quality. Tests implemented include those approved and specified
within the NIST 800-90b Standard.

Environmental factors such as heat can have an impact on the optics within the QRNG, and so
tests are conducted on the QOM and AutoCalibration functions are in place to adjust the
operational parameters as required.

Developing with QCicada

NOTE:

The QRNG sends data in little-endian format. Depending on your host machine, it might be
necessary to account for that.

Stopping the Continuous mode can take some time, this depends on the timeout used.

Examples

Python
Python 3.9 or higher is required

Installation
1. Download the latest version of pyqcc from the link in the System Requirements section
2. Use the following command to install pyqcc:

pip install pyqcc-x.y.z-py3-none-any.whl

Within pyqcc we have produced a standalone implementation of both the communication
library/driver and the CLI example. It can be used independently, or as a module which is
imported into your own projects.

The command line tool pyqcc-cli is installed during the above installation, and can be used
to communicate with any Crypta Labs QRNG devices supporting USB-CDC and TCP/UDP
communication interface. QCicada only supports USB-CDC as an interface.

Page 21

Reading Quantum Random Numbers from a command line
In the following example, 1000 bytes of random data is read from a QCicada device and saved
to a local file and named Randgen.bin:

pyqcc-cli -d /dev/ttyUSB0 -r 1000 -o randgen.bin

Importing pyqcc as a module
In this example, data is read from the QCicada with ID ttyUSB0, which it then prints the first
and last bytes to the screen.

#Example script that reads random data from a QCicada device

import pyqcc
qccdev = pyqcc.cmdctrl.device("serial","/dev/ttyUSB0")

if(qccdev.start_continuous()):
print("Continuous mode started!")
Read 1MB random data
rnd_bytes = qccdev.read_continuous(1000000)
if(rnd_bytes):

#print first and last random bytes
print("Continuous read success!

{:02X}..{:02X}".format(rnd_bytes[0], rnd_bytes[-1]))
else:

print("Error continuous read")
Stop continuous mode
if(qccdev.stop()):

print("Continuous mode Stopped!")
else:

print("Stop error!")
else:

print("Error starting continuous mode")

Page 22

Reading signed data

In this example we will read and verify signed data from the QCicada.

1. Ensure Certificate Provisioning has been performed on the QCicada.
2. Install the pyqcicada package to enable the verification of signed read functionality:

Download the latest ver of pyqcicada from https://cryptalabs.com/support/releases

Use the following command to install pyqcicada:

pip install pyqcicada-x.y.z-py3-none-any.whl

3. See the example script below:

import pyqcicada

Open the device
qcicadadev = pyqcicada.cmdctrl.device("/dev/ttyACM0")

Read the raw device public key, verified with the CA public key

dev_pubkey_verified =
qcicadadev.get_dev_pub_key_verified("path/to/ca_pubkey.pem")

if(dev_pubkey_verified):

print("Device public key valid: " + dev_pubkey_verified.hex())

data = cc.read_signed_and_verify(args.read_verify,
dev_pubkey_verified)

if(data):
print("OK: Data signature is valid!")
print("Data: {:02X} ... {:02X}".format(data[0],

data[args.read_verify-1]))

else:
print("Error reading signed data")

else:
print("Device key not valid")

Page 23

https://cryptalabs.com/support/releases

API Reference - Python

Full documentation on the Python pyqcc and pyqcicada APIs is available online:

https://cryptalabs.com/support/docs/pyqcc/
https://cryptalabs.com/support/docs/pyqcicada

Page 24

https://cryptalabs.com/support/docs/pyqcc/
https://cryptalabs.com/support/docs/pyqcicada

C

You can include the QCC library source code and compile it together with your application, or
build the library and statically/dynamically link it with your application.

Structure packing

When using a compiler different to gcc or MSVC, take care of the correct packing of the data
structure defined in cmdctrl_types.h. If your compiler doesn't support #pragma pack(1)
modify the file to be compatible with your compiler and perform the correct packing.

Building

Requirements Linux

● make
● cmake (min version 3.16.3)

Requirements Windows

● Visual Studio, MSVC compiler
● cmake

Cmake is used to build both the library (libqcc.so or qcc.dll) and the cli executable under Linux
and Windows.

Download the source code package from the link in the System Requirements section and
extract to a working folder. Navigate to the folder and into the /qcc directory and run the
following commands:

cmake -S . -B build

cmake --build build

It will generate the toolchain files and the final compiled artifacts within the build directory.
The whole build configuration is defined in the file CMakeLists.txt
NOTE: On some systems cmake 3.xx command is cmake3

Page 25

https://cmake.org/

Example

Read data from the QRNG
The following program will check the status of the QRNG and then read 1024 bytes of data in
One Shot mode, before printing it to the console.

#include <stdint.h>
#include <stdio.h>
#include "qcc.h"

qcc_hdl_t qcc;
uint8_t random_data[1024];

int main(void) {
int ret;
ret = qcc_init(&qcc, QCC_SERIAL, (char *)"/dev/ttyUSB0", 100,

2048);

if(ret != QCC_OK){
printf("ERROR: initializing QRNG device, return=%d\n", ret);
return -1;

}

ret = qcc_cmd_start(&qcc, CMDCTRL_START_ONE_SHOT, random_data,
1024);

if(ret != QCC_OK){
printf("ERROR: Reading data, return=%d\n", ret);
qcc_close(&qcc);

return -1;
}

qcc_close(&qcc);

for(int i = 0; i < 1024; i++)
printf("%02X ", random_data[i]);

printf("\r\n");
return 0;

}

Page 26

API Reference - C

Return codes

Defined in qcc_errno.h, all the APIs return one of the following integer codes:

● QCC_OK
● QCC_ERROR
● QCC_TIMEOUT
● QCC_INVALID_ARGUMENT
● QCC_MALLOC_ERROR
● QCC_NACK

QCC types

● qcc_hdl_t: main handle, all the device APIs need this, initialized by the qcc_init()
function

● qcc_comm_type_t: communication interface type

Cmd&Ctrl types

They represent the requests and responses of the Cmd&Ctrl protocol:

● cmdctrl_start_mode_t: one shot or continuous mode
● cmdctrl_status_t: QRNG status, error conditions and number of ready bytes
● cmdctrl_config_t: QRNG configuration
● cmdctrl_statistics_t: QRNG Statistics
● cmdctrl_info_t: Serial number, software and hardware version

Functions

int qcc_version(void);

Description
Get QCC library version.

Parameters
N/A

Page 27

int qcc_init(qcc_hdl_t *hdl, qcc_comm_type_t comm, char
*dev_id, int timeout_ms, int read_size)

Description
Initialize QCC device and link to a specific communication handler

Parameters

● hdl : qcc handle to initialize
● comm : communication type = QCC_SERIAL
● dev_id : device identification, e.g "COM1", "/dev/ttyUSB0"
● timeout_ms: timeout used in the communication with the device
● read_size : maximum number of bytes to read in one go, depends on the

communication interface used and the overall speed of the link.

int qcc_cmd_get_status(qcc_hdl_t *hdl, cmdctrl_status_t *sts)

Description
Read QRNG status

Parameters

● hdl : qcc handle
● sts : pointer to a cmdctrl_status_t structure filled with the status received

Page 28

int qcc_cmd_start(qcc_hdl_t *hdl, cmdctrl_start_mode_t mode,
uint8_t *buf, uint16_t len)

Description
Start QRNG Generation

Parameters

● hdl : qcc handle
● mode: start mode, QCC_ONE_SHOT to read a chunk of data straight away or

QCC_CONTINUOUS to start the continuous mode
● buf : pointer to a pre-allocated buffer to fill with the data received (only if

QCC_ONE_SHOT)
● len : How many bytes to read (only if QCC_ONE_SHOT), limited by the currently

available bytes

int qcc_read_continuous(qcc_hdl_t *hdl, uint8_t *buf, int len)

Description
Read data from a QRNG device currently in continuous mode.
Start continuous mode before using this function

Parameters

● hdl : qcc handle
● buf : pointer to a pre-allocated buffer to fill with the data received
● len : How many bytes to read, limited to 2GB

Page 29

int qcc_cmd_stop(qcc_hdl_t *hdl)

Description
Stop continuous mode

Parameters

● hdl : qcc handle

int qcc_cmd_reset(qcc_hdl_t *hdl)

Description
Reset Random number generation

Parameters

● hdl : qcc handle

int qcc_cmd_set_config(qcc_hdl_t *hdl, cmdctrl_config_t *cfg)

Description
Set QRNG configuration

Parameters

● hdl : qcc handle
● cfg : pointer to a valid cmdctrl_config_t structure

Page 30

int qcc_cmd_get_config(qcc_hdl_t *hdl, cmdctrl_config_t *cfg)

Description
Get QRNG configuration

Parameters

● hdl : qcc handle
● cfg : pointer to cmdctrl_config_t structure to fill with the configuration received

int qcc_cmd_get_statistics(qcc_hdl_t *hdl, cmdctrl_statistics_t
*stats)

Description
Get QRNG statistics

Parameters

● hdl : qcc handle
● stats : pointer to cmdctrl_statistics_t structure to fill with the statistics

received

int qcc_cmd_get_info(qcc_hdl_t *hdl, cmdctrl_info_t *info)

Description
Get QRNG device information

Parameters

● hdl : qcc handle
● info : pointer to cmdctrl_info_t structure to fill with the information received

Page 31

int qcc_close(qcc_hdl_t *hdl)

Description
Close QCC handle

Parameters

● hdl : qcc handle

Page 32

