Firefly QRNG

User Guide

Version 1.2

Copyright 2024 Crypta Labs Limited
51 St John's Sq

London

EC1V 4JL

Contact details:
Email: support@cryptalabs.com
Internet: https://www.cryptalabs.com/

All Rights reserved. No part of this documentation may be reproduced in any form (printing,
photocopy or according to any other process) without the written approval of Crypta Labs
Limited or be processed, reproduced or distributed using electronic systems.

Crypta Labs Limited reserves the right to modify or amend the current document at any time
without prior notice.

All trademarks and registered trademarks are the property of their respective owners.

Crypta Labs Limited assumes no liability for typographical errors and damages incurred due to
them.

Page 2

Contents

Contents
Introduction
System Requirements
Device Specification
Installation Guide
Linux
Preparation for Installation
Setup local directories
Validating the install
Windows
Preparation for Installation
Setup local directories
Validating the install
Product Usage
Generate a Random Number
One Shot mode
Continuous mode (Streaming)
Appending captured data to a file
Disable/Enable Post Processing
Display QRNG Status
Display Device Information
Using Multiple Firefly Devices
Firmware Update
Product Features
Secure Boot
Real time Health Tests
Developing with Firefly
Examples
Python
Installation
Reading Quantum Random Numbers from a command line
Importing pygcc as a module
API Reference - Python
C
Structure packing
Building
Requirements Linux
Requirements Windows

Page 3

N N~N~NooOooow

NN NDNDMN DN DN DMNDNDNDDN A A @Q QA A @Q A A Q@A @A @Q @Q @A @Q a2 a2 A A -
=) A A A OO0 0O W O VW WVWOoWOomMOoO oW NNO OO PPWWWoO o oo ow

Example

Read data from the QRNG

API Reference - C

Return codes

QCC types

Cmd&Ctrl types

Functions
int gcc_version()
int gcc_init()
int gcc_cmd_get_status()
int gcc_cmd_start()
int gcc_read_continuous()
int gcc_cmd_stop()
int gcc_cmd_reset()
int gcc_cmd_set_config()
int gcc_cmd_get config()
int gcc_cmd_get_statistics()
int gcc_cmd_get_info()
int gcc_close()

Page 4

22
22
23
23
23
23
23
23
24
24
25
25
26
26
26
27
27
27
28

Introduction

This document contains the user’s guide for the Crypta Labs PCle Quantum Random Number
Generator (QRNG) — also known as Firefly QRNG.

System Requirements

Operating System

Linux, Windows
Tested on Ubuntu 18.x/20.x/22.x/24 .x, Centos 7, Windows 10/11

Interface

PCle 2.0

Crypta Labs supply the following executables/scripts to support the Firefly QRNG:

libgcc.so QCC Library for Linux, used to access the device
qcc.dll QCC Windows driver, used to access the device
qcc-cli QCC Interface tool for RNG generation/status

query/firmware update.

pyqcc-x.y.z.tar.gz
pyqcc-x.y.z-py3-none-any.whl

Python implementation of QCC Library and interface
tool.

Crypta Labs supply the following source code to support development with the Firefly QRNG:

gcc-source

Source code for the above Linux/Windows
executables

All of the above files are available via https://cryptalabs.com/support/releases

Page 5

https://cryptalabs.com/support/releases

Device Specification

Performance

20Mbps
(~78,000 Random Numbers per second*)

NIST Compliant output

Yes

Quality Independently
verified

Yes

Entropy Source

1 x Quantum Optics Module

Size 7cm x 7cm
Power

Single Input Voltage 3.3V
Normal operation 48mwW
Idle Mode 12mW
Startup from Idle <ims

Recommended operating
Temperature

-30°C ~ +85°C

Max operating
Temperature

-40°C ~ +125°C

Interface

PCle Gen 2.0

*Assumes random number of 256bits

Page 6

Installation Guide

For details on how to install the Python version of the QCC Control Library, please see the later
section: Developing with Firefly \ Python.

Linux

Preparation for Installation

In order to test Firefly operation, we will use the QCC Control Library and gcc-c1i executable.
All examples shown are tested on Ubuntu 20.x and above.

Setup local directories

1. Download the Crypta Labs assets from the links within the System Requirements section
above.

You need to create a suitable directory in which to place the gcc-c1i and 1ibgcc. so. In this
example, and used elsewhere in this guide, we are creating a directory called /opt/Firefly

2. Enter the following commands to create this new directory. In the chown command,
specify the user and the owning group as regards the directory ownership and
permissions. Execute these commands with sudo permissions if appropriate:

cd /opt
mkdir Firefly

chown {user}:{owning group} Firefly

3. Now extract and copy the contents relevant to your OS to the /opt/Firefly directory.
(E.g. If you use Ubuntu, move files from the Ubuntu folder within the archive).
Next set the permissions for files to be executable:

chmod 744 ./gcc-cli libgcc.so
4. Move lib-gcc.sotothe /usr/1ib folder:
sudo mv libgcc.so /usr/lib

You are now ready to validate that the QRNG is working correctly.

Page 7

Validating the install

5.

6.

Install the Firefly device into a spare PCle port on your computer and power on.

The device ID is required on the command line to identify which Firefly is being
addressed. To find this, Enter the command:

dmesg | grep tty

This will produce output on the console like the below. Firefly will be detected with the
precursor cdc_acm

In the case of this example, the ID of Firefly is t t yACMO0: and this ID will be used across
all examples in this document. Ensure you use the ID relevant to your system.

[2.582013] cdc_acm 3-2:1.0: ttyACMO: USB ACM device

Enter the command:
./qcc-cli -d /dev/ttyACMO -f -v
You should see results similar to the following:

QCC command-line tool
Copyright (C) Crypta Labs 2023

Initialize QCC

QRNG INFO:
core version: 0x10007

FW version: 0x10001
Serial: 3847364B33315117
HW info: ORNG-PCIE 1.0

If you see output like the above, the Firefly is functioning correctly.

Page 8

NOTE:

To run the code without root privileges, usually the Firefly Serial device is presented on
Linux as /dev/ttyACMO (if one device is present) and usually that device is assigned to the
"dialout" group.

The user accessing the Firefly device must be added to the group "dialout”, in this way the
process will be able to use the device without needing to be a super user.

For example, the file permissions for the /dev/ttyACMO device are as follows:
crw—-rw—-—-——— 1 root dialout 166, 0 Jul 30 14:39 ttyACMO

To be able to use the device without root privileges, add the non-root user to the dialout group
with the following command::

sudo usermod —-a -G dialout <non-root-username>

Update the users groups by restarting the ssh session, or rebooting the system, after that you
should be able to use the binary as a non-root user.

Page 9

Windows

Preparation for Installation

In order to test Firefly operation, we will use the supplied gcc-c1i executable. All examples
shown are tested on Windows 10.

Setup local directories

1. Download the Crypta Labs assets from the links within the System Requirements section
above.

You need to create a suitable directory in which to place the gcc-cli.exe and 1ibgcc.dll.

In this example, and used elsewhere in this guide, we are creating a directory called
C:\Firefly

2. Either use Windows Explorer to create a directory named Firefly in the root of C:\ or
enter the following commands in Command Prompt:

cd\
md Firefly

3. Now extract and copy the contents from the \Windows.x64\ folder within the
downloaded archive to the newly created directory.

You are now ready to validate that the QRNG is working correctly.
Validating the install

4. Plug the Firefly device into a spare PCI port on your computer.

5. The COM port number is required on the command line to identify which Firefly is being
addressed. To find this, use Device Manager and navigate to ‘Ports (COM & LPT)'.
Expand the list to see connected devices as illustrated in the image on the next page.

Page 10

% Device Manager

File Action View Help

w B OM-Zephyrus
i Audic inputs and outputs
;@ Batteries
& Biometric devices
ﬂ Bluetooth
® Cameras
EH Computer
= Disk drives
& Display adapters
W Firmware
g Human Interface Devices

:i“; Imaging devices
E2 Keyboards
L I Memaory technology devices
[B Mice and other pointing devices
[Monitors
Metwork adapters
K Other devices
~ i Ports (COM & LPT)
i USB Serial Port (COM3)

=1 Print nenec

If you are unsure on which device is which, right click on a detected ‘USB Serial
Port (COMx)’ device and choose ‘Properties’.On the Properties window that opens, go
to the ‘Details’ tab. Firefly will display as ‘Firefly - QRNG PCIe card when
selecting the Bus reported device description property.

USE Senal Device (COM3) Properties *
General Port Settings Driver Detaills Events

e 3 USE Serial De*.-;ice (COM3)

Property

Bus reported device description e

Value
Firefly - QRMNG PCle card

Page 11

8. In this example we are using COM3 as the relevant port. Enter the command in
Command Prompt:

gcc-cli -d COM3 -f -v
You should see results similar to the following:

QCC command-line tool ##4##
Copyright (C) Crypta Labs 2023

Initialize QCC

QRNG INFO:

Core version: 1.7

SW version: 1.1

Serial: 3847364B33315117
HW info: QRNG-PCIE 1.0

If you see output like the above, the Firefly is functioning correctly.

NOTE:
All of the Usage Examples in the following pages are demonstrated on a Linux System.

Windows users must substitute the serial port identifier as below:

Linux = /dev/ttyACMO
Windows = COM3

Also, there is no need to precede calls to gcc-c1i with ./
Example:

The following illustrates the difference in the syntax for the same command executed on
windows and Linux:

Linux Command:
./gcc-cli -d /dev/ttyACMO -f -v

Windows Command:
gcc-cli -d COM3 -f -v

NOTE:
If the detected COM port is above COM9 (COM10 upwards), the port number must be preceded
with \\ .\

Example:
gcc-cli -d \\.\COM10 -f -v

Page 12

Product Usage

The supplied gcc-c1i tool can be used to access many of Firefly’s features. In the below use
cases we will document commands used and the expected output.

All examples shown use Linux syntax. Windows users, please see the note verso.

Note: in all examples we will be using the —v switch to enable Verbose mode and enhance the
console output.

Some Crypta Labs QRNG devices support communication over UDP. Firefly only supports
Serial communication and this is selected by default in the examples.

All of the below commands are summarised and displayed to the console with the command:

./gcc-cli -d /dev/ttyACMO --help

Generate a Random Number

One Shot mode

One Shot mode will read a requested amount of random data up to 13,440 bytes in size.
To generate 1000 bytes of random data and save to a file named Randgen.bin, use the
command:

./gcc-cli -d /dev/ttyACMO -r 1000 -o Randgen.bin -v

The console output should look like the below. The last field named Data will display the first
and last bit from the generated random data:

QCC command-line tool
Copyright (C) Crypta Labs 2023

Initialize QCC

Read 1000 bytes

1000 bytes of data written to file Randgen.bin
Data= 3b ... 6a

Page 13

Continuous mode (Streaming)

Continuous mode is used to generate data continuously until a Stop command is issued. It is
used when data capture is required in greater amounts than 13,400 bytes. To generate 15,000
bytes of data and save to a file named Randgen.bin, use the following commands:

./gcc-cli -d /dev/ttyACMO --start -v

The above command begins a continuous stream of data being generated on Firefly and
passed to the host. You will see the output:

QCC command-line tool
Copyright (C) Crypta Labs 2023

Initialize QCC
Continuous mode started!

The next command will begin a capture of the data:

./gqcc-cli -d /dev/ttyACMO -c -r 15000 -o Randgen.bin -v

Capture time is dependent on the speed of the device, which operates at ~20Mbps. A large
capture will result in longer wait times to complete. You will see this result on the console:

QCC command-line tool
##4#4 Copyright (C) Crypta Labs 2023 ####

Initialize QCC
Read 15000 bytes

15000 bytes of data written to file Randgen.bin
Data= 28 ... 1b

The device remains in continuous mode until it is stopped. To issue a Stop command, use the
following:

./qcc-cli -d /dev/ttyACMO --stop -V

Successful response will return the following to the console:

QCC command-line tool
Copyright (C) Crypta Labs 2023

Initialize QCC
Continuous mode STOP!

Page 14

Appending captured data to a file

In the previous examples, when a filename is specified to save the captured random data, that
file is created or overwritten if it already exists. In order to Append data to an existing file, use
the switch —a within the command. The following command shows One Shot mode appending
1000 bytes of data to a file named Randgen.bin:

./gcc-cli -d /dev/ttyACMO -r 1000 -o Randgen.bin -a -v

Successful console output looks like this:
###4# QOCC command-line tool ####
###+# Copyright (C) Crypta Labs 2023 ####

Initialize QCC
Read 1000 bytes
1000 bytes of data written to file Randgen.bin
Data= 11 ... e8

Disable/Enable Post Processing

Post Processing is a function performed on the RAW capture form the onboard Quantum Optics
Module (QOM) to ensure the output is compliant with NIST Standards.

By default Post Processing is enabled on Firefly upon startup.

It may be desirable to output data without Post Processing, this is known as Raw data. Firefly
supports 3 methods of output:

- (0) Post Processing enabled (NIST compliant output using SHA256)
- (1) Raw Noise (Data from the QOM with some conditioning in accordance with the

health tests)
- (2) Raw Samples (Data directly from the QOM with no conditioning)

To disable Post Processing and enable Raw Noise capture, use the following command:
./gcc-cli -d /dev/ttyACMO -P 1 -v

To disable Post Processing and enable Raw Samples capture, use the following command:
./gcc-cli -d /dev/ttyACMO -P 2 -v

To enable Post Processing, use the following command:

./gcc-cli -d /dev/ttyACMO -P 0 -v

Page 15

Display QRNG Status

Statistics are available from Firefly as to the status of the device, the readily available data in
the buffer and the results of the Active Health Tests which run during operation to ensure quality
is maintained.

To view the status, run the command:
./gcc-cli -d /dev/ttyACMO -s -v

You will see output similar to the following on the console:

QCC command-line tool
###+# Copyright (C) Crypta Labs 2023 ####

Initialize QCC

QRNG STATUS:
Initialized:
startup test in progress:
voltage low:
voltage high:
voltage undefined:
bitcount:
repetition count:
adaptive proportion:
ready bytes:

w O O O O O o o K

5200

Note: It is normal to see some errors logged within these statistics. Firefly is constantly
monitoring itself and will adjust the QOMs operational parameters accordingly to maintain
quality output.

Page 16

Display Device Information

To display device specific information such as Serial number and firmware revision, enter the
command:

./gcc-cli -d /dev/ttyACMO -f -v

You should see results similar to the following:

QCC command-line tool
Copyright (C) Crypta Labs 2023

Initialize QCC

QRNG INFO:
core version: 0x10007

FW version: 0x10001
Serial: 3847364B33315117
HW info: ORNG-PCIE 1.0

Using Multiple Firefly Devices

It is possible to use multiple Firefly’s on the same host. We have seen in previous examples the
need to specify the device you are communicating with. This is achieved via the -d switch. In
order to send a command to a different Firefly, specify the full identifier of the device within the
command.

In this example, we will read 1000 bytes of data from a device with ID ttyACMO to a file named
Randgen.bin:

./gcc-cli -d /dev/ttyACMO -r 1000 -o Randgen.bin -v

Page 17

Firmware Update

User level firmware update is in development for future release.

Product Features

Secure Boot

Secure Boot is in development for future release.

Real time Health Tests

Health tests run in conjunction with random number generation to ensure the data provided by
Firefly is of the highest quality. Tests implemented include those approved and specified within
the NIST 800-90b Standard.

Environmental factors such as heat can have an impact on the optics within the QRNG, and so
tests are conducted on the QOM and AutoCalibration functions are in place to adjust the
operational parameters as required.

Page 18

Developing with Firefly

NOTE:

The QRNG sends data in little-endian format. Depending on your host machine, it might be
necessary to account for that.

Stopping the Continuous mode can take some time, this depends on the timeout used.

Examples

Python
Python 3.9 or higher is required

Installation

1. Download the latest version of pyqcc from the link in the System Requirements section
2. Use one of the following commands to install pyqcc:

pip install pygcc-x.y.z.tar.gz

or
pip install pygcc-x.y.z-py3-none-any.whl

Within pygcc we have produced a standalone implementation of both the communication
library/driver and the CLI example. It can be used independently, or as a module which is
imported into your own projects.

The command line tool pygcc-c11i is installed during the above installation, and can be used
to communicate with any Crypta Labs QRNG devices supporting USB-CDC and TCP/UDP
communication interface. Firefly only supports USB-CDC as an interface.

Page 19

Reading Quantum Random Numbers from a command line

In the following example, 1000 bytes of random data is read from a Firefly device and saved to
a local file and named Randgen.bin:

pygcc-cli -d /dev/ttyACMO -r 1000 -o randgen.bin

Importing pyqcc as a module

In this example, data is read from the Firefly with ID ttyACMO0, which it then prints the first and
last bytes to the screen.

#Example script that reads random data from a Firefly device

import pygcc
gccdev = pygcc.cmdctrl.device ("serial","/dev/ttyACMO")

if (gccdev.start continuous()):
print ("Continuous mode started!"™)
Read 1MB random data
rnd bytes = gccdev.read continuous(1000000)
if (rnd bytes):
#print first and last random bytes
print ("Continuous read success!
{:02X}..{:02X}".format (rnd bytes[0], rnd bytes[-1]))
else:
print ("Error continuous read")
Stop continuous mode
if (gccdev.stop()) :
print ("Continuous mode Stopped!"™)
else:
print ("Stop error!")
else:
print ("Error starting continuous mode")

API Reference - Python

Full documentation on the Python pygcc API is available online:

https://cryptalabs.com/support/docs/pyacc/

Page 20

https://cryptalabs.com/support/docs/pyqcc/

C

You can include the QCC library source code and compile it together with your application, or
build the library and statically/dynamically link it with your application.

Structure packing

When using a compiler different to gcc or MSVC, take care of the correct packing of the data
structure defined in cmdctrl_types.h. If your compiler doesn't support #pragma pack (1)
modify the file to be compatible with your compiler and perform the correct packing.

Building

Requirements Linux

e make
e cmake (min version 3.16.3)

Requirements Windows

e Visual Studio, MSVC compiler
e cmake

Cmake is used to build both the library (libgcc.so or gcc.dll) and the cli executable under Linux
and Windows.

Download the source code package from the link in the system requirements section and
extract to a working folder. Navigate to the folder and into the /gcc directory and run the
following commands:

cmake -5 . -B build

cmake --build build

It will generate the toolchain files and the final compiled artifacts within the build directory.
The whole build configuration is defined in the file CMakeLists.txt
NOTE: On some systems cmake 3.xx command is cmake3

Page 21

https://cmake.org/

Example

Read data from the QRNG

The following program will check the status of the QRNG and then read 1024 bytes of data in
One Shot mode, before printing it to the console.

#include <stdint.h>
#include <stdio.h>
#include "gcc.h"

gcc_hdl t gcc;
uint8 t random data[1024];

int main(void) {

int ret;

ret = gcc_init(&gcc, QCC SERIAL, (char *)"/dev/ttyACMO", 100,
2048) ;

if (ret != QCC_OK) {
printf ("ERROR: initializing QRNG device, return=%d\n", ret);
return -1;

ret = gcc_cmd start (&gcc, CMDCTRL START ONE SHOT, random data,
1024);

if (ret != QCC OK) {
printf ("ERROR: Reading data, return=%d\n", ret);
gcc_close (&gcc) ;
return -1;

gcc_close (&gcc) ;

for(int 1 = 0; 1 < 1024; i++)
printf ("%02X ", random datal[i]);

printf ("\r\n");
return 0;

Page 22

API Reference - C

Return codes
Defined in gcc_errno.h, all the APIs return one of the following integer codes:

QCC_OK

QCC_ERROR
QCC_TIMEOUT
QCC_INVALID ARGUMENT
QCC_MALLOC_ERROR
QCC_NACK

QCC types

e gcc hdl t:main handle, all the device APIs need this, initialized by the gcc init ()
function
e gcc comm type t:communication interface type

Cmd&Ctrl types

They represent the requests and responses of the Cmd&Ctrl protocol:

e cmdctrl start mode t:one shotor continuous mode
e cmdctrl status t:QRNG status, error conditions and number of ready bytes
e cmdctrl config t: QRNG configuration

e cmdctrl statistics t: QRNG Statistics

e cmdctrl info t: Serial number, software and hardware version

Functions

int gcc version(void) ;

Description
Get QCC library version.

Parameters
N/A

Page 23

int gcc init(gcc hdl t *hdl, gcc comm type t comm, char
*dev id, int timeout ms, int read size)

Description
Initialize QCC device and link to a specific communication handler

Parameters

hdl :qcc handle to initialize

comm :communication type = QCC SERIAL

dev id: device identification, e.g "cOM1", "/dev/ttyACMO"
timeout ms: timeout used in the communication with the device

read size :maximum number of bytes to read in one go, depends on the
communication interface used and the overall speed of the link.

int gcc cmd get status(gcc hdl t *hdl, cmdctrl status t *sts)

Description
Read QRNG status

Parameters

e hdl :qcchandle
e sts :pointertoacmdctrl status t structure filled with the status received

Page 24

int gcc cmd start(gcc hdl t *hdl, cmdctrl start mode t mode,
uint8 t *buf, uintl6 t len)

Description
Start QRNG Generation

Parameters

e hdl :qcchandle
mode: start mode, OCC ONE SHOT to read a chunk of data straight away or
QCC_CONTINUOUS to start the continuous mode

e Dbuf : pointer to a pre-allocated buffer to fill with the data received (only if
QCC_ONE SHOT)

e len :How many bytes to read (only if 0CC ONE SHOT), limited by the currently
available bytes

int gcc read continuous(gcc hdl t *hdl, uint8 t *buf, int len)

Description
Read data from a QRNG device currently in continuous mode.
Start continuous mode before using this function

Parameters

e hdl :qcchandle
e Dbuf : pointerto a pre-allocated buffer to fill with the data received
e len :How many bytes to read, limited to 2GB

Page 25

int gcc cmd stop(gcc hdl t *hdl)

Description
Stop continuous mode

Parameters

e hdl :qcchandle

int gcc cmd reset(gcc hdl t *hdl)

Description
Reset Random number generation

Parameters

e hdl :qcchandle

int gcc _cmd set config(gcc hdl t *hdl, cmdctrl config t *cfqg)

Description
Set QRNG configuration

Parameters

e hdl :qcchandle
e cfg :pointertoavalid cmdctrl config t structure

Page 26

int gcc _cmd get config(gcc hdl t *hdl,

cmdctrl config t *cfg)

Description
Get QRNG configuration

Parameters

e hdl :qcchandle

cfg :pointerto cmdctrl config t structure to fill with the configuration received

*stats)

int gcc _cmd get statistics(gcc _hdl t *hdl,

cmdctrl statistics t

Description
Get QRNG statistics

Parameters

hdl :qcc handle
stats :pointerto cmdctrl statistics t

[]
[]
received

structure to fill with the statistics

int gcc _cmd get info(gcc hdl t *hdl,

cmdctrl info t *info)

Description
Get QRNG device information

Parameters

e hdl :qcchandle

info :pointerto cmdctrl info t structure to fill with the information received

Page 27

int gcc close(gcc _hdl t *hdl)

Description
Close QCC handle

Parameters

e hdl :qcchandle

Page 28

